Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming

نویسندگان

  • Benedetta Morini
  • Valeria Simoncini
چکیده

We consider primal-dual IP methods where the linear system arising at each iteration is formulated in the reduced (augmented) form and solved approximately. Focusing on the iterates close to a solution, we analyze the accuracy of the so-called inexact step, i.e., the step that solves the unreduced system, when combining the effects of both different levels of accuracy in the inexact computation, and different processes for retrieving the step after block elimination. Our analysis is general and includes as special cases sources of inexactness due either to roundoff and computational errors or to the iterative solution of the augmented system using typical procedures. In the roundoff case, we recover and extend some known results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

An inexact proximal bundle method with applications to convex conic programming

We present an inexact bundle method for minimizing an unconstrained convex sup-function with an open domain. Under some mild assumptions, we reformulate a convex conic programming problem as such problem in terms of the support function. This method is a first-order method, hence it requires much less computational cost in each iteration than second-order approaches such as interior-point metho...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming

In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields a (practical) long-step algorithm. Both algorithms allow for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2017